本文へ
ここから本文です

最先端の永久磁石材料内部の微小磁石の振舞いを3次元で透視 超高性能磁石開発に向けた保磁力メカニズム解明に一歩前進

【本学研究者情報】

〇多元物質科学研究所 教授 岡本 聡
研究室ウェブサイト

【発表のポイント】

  • 永久磁石の性能を表す指標である保磁力(注1)について、その発現メカニズムは長年の未解決問題である。
  • 放射光を用いた磁気トモグラフィー(磁気CT(注2))法により、高性能な永久磁石内部の微小磁石の外部磁場に対する振舞いを3次元的に可視化することに世界で初めて成功した。
  • 本成果により、表面欠陥(注3)の影響を受けない真の保磁力メカニズム解明、ならびに次世代の超高性能磁石開発につながると期待される。

【概要】

永久磁石は、電気自動車の駆動用モータ、エアコンのコンプレッサー用モータ、風力発電などに不可欠な材料であり、2050年カーボンニュートラル実現のために更なる高性能化が望まれています。永久磁石の性能を表す指標として保磁力がありますが、その発現メカニズムの解明は長年の未解決課題となっています。保磁力メカニズム解明のための最も直接的な手段は、磁石内部に存在する磁区構造(数マイクロメートル以下の微細なS極とN極の分布であり、微小磁石に相当)を観測することです。しかし、これまでの手法では材料表面の観察しか行えなかったため、得られる磁区画像は表面欠陥層等の影響を大きく受けたものでした。 

今回、東北大学多元物質科学研究所岡本聡 教授、関西学院大学鈴木基寛 教授らの研究グループは、東北大学国際放射光イノベーション・スマート研究センター、高輝度光科学研究センター、物質・材料研究機構、大同特殊鋼株式会社と共同で、大型放射光施設SPring-8(注4)で開発された硬X線磁気トモグラフィー(磁気CT)法を用いて、先端永久磁石材料内部の磁区構造の外部磁場に対する振舞いを3次元的に可視化することに成功しました。本手法によりこれまで不可能であった表面欠陥の影響を受けない真の保磁力メカニズムの解明、ならびに更なる高性能永久磁石の開発につながることが期待されます。

本研究成果は、Springer Nature社刊行のオープンアクセス科学ジャーナル『NPG Asia Materials』(8月19日付)にオンライン公開されました。

図1 大型放射光施設SPring-8で実施した先端永久磁石材料の磁気CT測定の概略図

【用語解説】

注1.保磁力
磁性材料に外部磁場を印加し、磁化反転をさせる際に磁化がゼロとなるのに必要な磁場の大きさ。永久磁石材料や磁気記録材料は大きな保磁力が望ましく、一方で電力変換部品やモータ磁心などに用いられる軟磁性材料は小さな保磁力が望ましい。

注2.磁気CT
CTとはComputed Tomographyの略であり、X線などを用いて被測定対象の透過像をいくつかの角度から取得し、透過像から元の情報(被測定対象物の内部)をコンピュータによって再構成計算により画像化する手法。病院などで断層画像診断に用いられるCTスキャンは、X線の吸収率を使って画像化するものである。磁性材料では磁化の向きに応じてX線の吸収率に差があり、この差を用いることで磁気情報によるCTが可能となる。

注3.表面欠陥
永久磁石の表面では、加工時のダメージや酸化等により永久磁石特性が失われている。そのため、磁石表面の磁区構造は欠陥層の影響等のため、磁石内部とは大きく異なっているものと予想されている。

注4.大型放射光施設SPring-8
兵庫県の播磨科学公園都市にある、世界最高性能の放射光を生み出す理化学研究所の施設。その利用支援等は高輝度光科学研究センターが行っている。SPring-8の名前はSuper Photon ring-8 GeVに由来。放射光とは、電子を光とほぼ等しい速度まで加速し、電磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のこと。SPring-8ではこの放射光を用いて、ナノテクノロジー、バイオテクノロジーや産業利用まで幅広い研究を行っている。

詳細(プレスリリース本文)PDF

問い合わせ先

(研究に関すること)
東北大学多元物質科学研究所
教授 岡本 聡(おかもと さとし)
電話 022-217-5357
E-mail satoshi.okamoto.c1*tohoku.ac.jp
(*を@に置き換えてください)

(報道に関すること)
東北大学多元物質科学研究所
広報情報室
電話 022-217-5198
E-mail press.tagen*grp.tohoku.ac.jp
(*を@に置き換えてください)

sdgs_logo

sdgs07 sdgs11

東北大学は持続可能な開発目標(SDGs)を支援しています

このページの先頭へ