本文へ
ここから本文です

組成・構造の多彩な無機ナノチューブの合成技術を世界に先駆けて開発 〜高効率な太陽電池への応用展開に期待〜

【本学研究者情報】

〇材料科学高等研究所/大学院工学研究科電子工学専攻 准教授 加藤俊顕
研究室ウェブサイト

【概要】

東京都立大学理学研究科物理学専攻の中西勇介助教、古澤慎平(大学院生)、田中拓光(大学院生)、蓬田陽平助教、柳和宏教授、Wenjin Zhang特任助教、宮田耕充准教授、産業技術総合研究所ナノ材料研究部門の佐藤雄太主任研究員、東北大学材料科学高等研究所/大学院工学研究科電子工学専攻の中條博史研究員、青木颯馬(大学院生)、加藤俊顕准教授、大阪大学産業科学研究所の末永和知教授らの研究チームは、次世代半導体として有望な遷移金属ダイカルコゲナイド(TMD)(注1)と呼ばれる二次元シートを円筒状に丸めた無機ナノチューブを合成し、その構造的な特徴を明らかにしました。

カーボンナノチューブは、黒鉛(グラファイト)の単層であるグラフェンを円筒状に丸めたナノ物質で、その巻き方(カイラリティー)に依存して電気伝導特性や光学特性が変化します。同様に、無機系の二次元シートもナノチューブにすることで、カイラリティーに由来する機能の発現が期待されます。特にTMDは、ナノチューブ化によって光起電力が増幅されることが報告され、近年注目を集めています。その変換効率はTMDナノチューブのカイラリティーに依存することも予測され、実験的な検証が待たれています。しかし、TMDナノチューブは構造制御が難しく、合成すると通常は複数の層が同軸状に重なった多層構造のナノチューブしか得られません。そのため、カイラリティーが明瞭な「単層ナノチューブ」の実験研究は進んでいませんでした。

本研究では、絶縁体の窒化ホウ素(BN)ナノチューブ(注2)をテンプレートとして用いた結晶成長により、様々な組成・構造をもつTMDの単層ナノチューブの合成に成功しました。さらに原子レベルの電子顕微鏡観察を駆使し、そのカイラリティーの分布を調べました。特に重要な成果として、①BNナノチューブ内で数ナノメートル径の細いTMDナノチューブを合成できたこと②単層TMDナノチューブのカイラリティー分布を解明したこと③外側と内側のカルコゲン元素が異なる「ヤヌス構造」を実現したこと、の三点があげられます。今回得られた研究成果は、TMDナノチューブの多量合成・構造制御の技術開発、構造/物性相関の解明につながるものであり、高効率な太陽電池などの応用展開に向けた材料設計の指針になることが期待されます。

本研究成果は、2023年10月5日付けでドイツの科学雑誌『Advanced Materials』オンライン速報版に掲載されました。

図1 遷移金属カルコゲナイド(TMD)の単層ナノチューブ。層状物質であるTMDの単層(ナノシート)を円筒状に丸めた構造をもつ。

【用語解説】

(注1)遷移金属ダイカルコゲナイド(TMD)
タングステンやモリブデンなどの遷移金属原子と、硫黄やセレンなどのカルコゲン原子で構成される層状物質。遷移金属とカルコゲンが1:2の比率で含まれ、組成はMX2と表される。単層は図1のように遷移金属とカルコゲン原子が共有結合で結ばれ、3原子厚のシート構造をもつ。近年、単層がもつ優れた半導体特性により大きな注目を集めている。

(注2)窒化ホウ素(BN)ナノチューブ
窒素とホウ素からなる六員環ネットワークを円筒状に巻いた構造をもつナノ物質。カーボンナノチューブ内の炭素原子が窒素とホウ素に置き換わった構造をとり、絶縁体としての性質をもつ。

詳細(プレスリリース本文)PDF

問い合わせ先

(研究に関すること)
東北大学材料科学高等研究所(WPI-AIMR)/
大学院工学研究科電子工学専攻
准教授 加藤 俊顕
TEL:022-217-6165
E-mail: kato12*tohoku.ac.jp(*を@に置き換えてください)

(報道に関すること)
東北大学材料科学高等研究所(WPI-AIMR)
広報戦略室
西山 信行
TEL: 022-217-6146
E-mail: aimr-outreach*grp.tohoku.ac.jp(*を@に置き換えてください)

sdgs_logo

sdgs07

東北大学は持続可能な開発目標(SDGs)を支援しています

このページの先頭へ